Solving an Equation using Newton-Raphson Method

we obtain a better approximation

Continue in this way .
If x_{n} is the current estimate, then the next estimate $\mathrm{x}_{\mathrm{n}+1}$ is given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Steps to find root using Newton's Method:

1) Check if the given function is differentiable or not. If the function is not differentiable, Newton's method cannot be applied.
2) Find the first derivative $f^{\prime}(x)$ of the given function $f(x)$.
3) Take an initial guess root of the function, say x_{1}.
4) Use Newton's iteration formula to get new better approximate of the root, say x_{2}

$$
x_{2}=x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)
$$

5) Repeat the process for $x_{3}, x_{4} \ldots$ till the actual root of the function is obtained, fulfilling the tolerance of error.

Ex: using Newton-Raphson Method for $f(x)=x^{3}-x-1$

Solution:

Given function: $\mathbf{x}^{\mathbf{3}} \mathbf{- x} \mathbf{- 1}=\mathbf{0}$, is differentiable.
The first derivative of $f(x)$ is $f^{\prime}(x)=3 x^{2}-1$
Lets determine the guess value.
$f(1)=1-1-1=-1$ and $f(2)=8-2-1=5$
Therefore, the root lies in the interval [1, 2]. So, assume $\mathrm{x}_{1}=1.5$ as the initial guess root of the function $f(x)=x^{3}-x-1$.

Now,
$f(1.5)=1.5^{3}-1.5-1=0.875$
$f^{\prime}(1.5)=3$ * $1.5^{2}-1=5.750$
Using Newton's iteration formula:
$\mathrm{x}_{2}=\mathrm{x}_{1}-\mathrm{f}\left(\mathrm{x}_{1}\right) / \mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=1.5-0.875 / 5.750=1.34782600$

\mathbf{n}	$\mathbf{x}_{\mathbf{n}}$	$\mathbf{f}\left(\mathbf{x}_{\mathbf{n}}\right)$
1	1.34782608696	0.100682173091
2	1.32520039895	0.002058361917
3	1.32471817400	0.000000924378
4	1.32471795724	0.000000000000
5	0.00000000000	

\% Program Code of Newton-Raphson Method in MATLAB

a=input('Enter the function in the form of variable $x:$ ','s');
x(1)=input('Enter Initial Guess:');
error=input('Enter allowed Error:');
$\mathrm{f}=$ inline(a)
dif=diff(sym(a));
d=inline(dif);
for $i=1: 100$
$x(i+1)=x(i)-((f(x(i)) / d(x(i))))$;
$\operatorname{err}(\mathrm{i})=a b s((\mathrm{x}(\mathrm{i}+1)-\mathrm{x}(\mathrm{i})) / \mathrm{x}(\mathrm{i}))$;
if err(i)<error
break
end
end
root=x(i)

